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ABSTRACT

Malolactic fermentation (MLF) is a complex biochemical process playing an important role in the production of red 
wines. The main reasons for its implementation are the reduction of titratable acidity and the consequent increase of 
pH, microbiological stability of wine, and changes in aromatic and sensory properties of wine. The aim of this study 
was to determine the compatibility of yeast and bacteria used by different malolactic fermentation techniques and 
their influence on the fermentation duration, concentration of individual organic acids, aroma compounds, and on 
chemical and sensory properties of Teran wines. The experiment included control treatment (without MLF), spontaneous 
MLF, induced MLF at the beginning of alcoholic fermentation with simultaneous inoculation of yeast and bacteria (co-
inoculation) and induced MLF after alcoholic fermentation (sequential MLF). In the co-inoculation treatment MLF had 
no negative effect on the alcoholic fermentation kinetic. Alcoholic fermentation was complete in all treatments. Co-
inoculation resulted in a significantly shorter duration of the MLF process. In all MLF treatments, significant reduction 
of titratable acidity and the increase of pH values was noted. Wines of the spontaneous MLF treatment obtained the 
highest concentration of volatile acidity and ethyl acetate. In all MLF treatments a complete consumption of malic 
acid and a decrease in concentration of citric acid, total amount of higher alcohols, and acetaldehyde were observed. 
Furthermore, significantly higher concentrations of ethyl esters, diacetyl, acetoin, and 2,3-butanediol were present in 
wines from all MLF treatments.
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SAŽETAK

Jabučno-mliječna fermentacija (JMF) složen je biokemijski proces koji ima važnu ulogu u proizvodnji većine crnih 
vina. Glavni učinci primjene JMF su snižavanje ukupne kiselosti uz rast pH vrijednosti, mikrobiološka stabilnost vina 
te promjena aromatskih senzornih svojstava vina. Cilj ovog istraživanja bio je utvrditi utjecaj različitih načina jabučno-
mliječne fermentacije na kompatibilnost kvasca i bakterija, duljinu trajanja fermentacije, koncentraciju pojedinačnih 
organskih kiselina i spojeva arome te senzorna svojstva vina sorte ´Teran´ (Vitis vinifera L.). Pokus je obuhvaćao kontrolni 
tretman (bez JMF), spontanu JMF, induciranu JMF u početku alkoholne fermentacije (koinokulacija) te induciranu JMF 
po završenoj alkoholnoj fermentaciji. U svim tretmanima alkoholna fermentacija je u potpunosti završila, bez zastoja ili 
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usporavanja. Koinokulacija je utjecala na značajno kraće trajanje JMF. Svi tretmani s JMF značajno su utjecali na sniženje 
koncentracije titracijske kiselosti i povećanje pH vrijednosti. Najviše koncentracije hlapive kiselosti i etil acetata utvrđene 
su u vinima spontane JMF. U svim tretmanima s JMF zabilježena je potpuna razgradnja jabučne kiseline te sniženje 
koncentracije limunske kiseline, ukupnih viših alkohola i acetaldehida. Nadalje, značajno više koncentracije etilnih estera, 
diacetila, acetoina i 2,3-butandiola zabilježene su u svim tretmanima s JMF. 

Ključne riječi: Oenococcus oeni, koinokulacija, spojevi arome, organske kiseline, trajanje jabučno-mliječne fermentacije

INTRODUCTION

Wine production is a complex biochemical process 
involving alcoholic fermentation (AF), which is carried 
out by yeasts, although malolactic fermentation (MLF) 
carried out by lactic acid bacteria is also quite common 
(Cañas et al., 2014). MLF is a biological deacidification 
process in which dicarboxylic L-malic acid is converted 
into monocarboxylic L-lactic acid and carbon dioxide by 
the action of different bacteria, mostly Oenococcus oeni, 
but also some Lactobacillus spp. and Pediococcus spp. 
(Liu, 2002), having significant influence on wine flavor 
(Lonvaud-Funel, 1999). 

Malolactic fermentation can occur as a spontaneous 
process (usually after alcoholic fermentation (AF) is 
completed) carried out by lactic acid bacteria of the 
genera Lactobacillus, Pediococcus and Oenococcus, or as 
an induced process, using commercial lyophilized starter 
cultures of Oenococcus oeni, added to must or young wine. 
The time of inoculation with selected bacteria can have 
significant impact on the malic acid degradation process 
and on wine quality (Cañas et al., 2014). Temperature, 
ethanol, pH, and SO2 are the main factors influencing the 
occurrence and rate of MLF, while medium-chain fatty 
acids (caproic, caprylic, capric, and lauric) are according 
to Lonvaud-Funel et al. (1988) the major inhibitory 
compounds, secondary products of yeast metabolism, 
that may affect the growth and reproduction of lactic acid 
bacteria as well as MLF flow. 

There are three possible times for bacterial inoculation: 
simultaneous inoculation of yeast and bacteria before AF 
(co-inoculation), inoculation during AF, and inoculation 
after AF (sequential inoculation). As a possible risk of 
co-inoculation, Alexandre et al. (2004) pointed out the 
possible development of unwanted and/or antagonistic 

interactions between yeast and bacteria (sluggish/stuck 
AF, formation of potentially negative volatile compounds 
in wine). In contrast, sequential inoculation avoids 
unwanted interactions between yeast and bacteria 
and reduces the risk of acetic acid formation due to 
lower concentrations of residual sugars. Despite the 
benefits, there are also risks associated with sequential 
inoculation, such as the presence of high concentrations 
of ethanol, SO2, and other toxic compounds produced by 
yeast, as well as nutrient deficiencies (Larsen et al., 2003). 
Positive effects of co-inoculation presented in their work 
Lasik-Kurdyś et al. (2017) and Jussier et al. (2006) stating 
that MLF in the presence of fermented sugar does not 
necessarily lead to increased acetic acid synthesis if AF 
proceeds rapidly without delay. In the work by Rosi et 
al. (2003) co-inoculation affected faster degradation 
of malic and citric acid without negative effects on the 
course of AF. 

Among the most important changes that occur 
during MLF is the synthesis and/or degradation of 
compounds carriers of varietal and fermentation aroma 
of wine (Cappello et al., 2017). According to Knoll et al. 
(2011) the moment of bacterial inoculation, especially 
co-inoculation, significantly increased the synthesis 
of ethyl and acetate esters, carriers of the wine aroma 
fruity component. On the other hand, Malherbe et al. 
(2012) stated an increase in ethyl esters in wines in which 
sequential MLF was conducted. Some species of lactic 
acid bacteria, especially Oenococcus oeni, can catabolize 
acetaldehyde, a secondary product of AF, significantly 
reducing the so-called vegetative, green, or grassy aromas 
of some wines (Liu, 2002). Previous research reported 
that the MLF influence on the concentration of higher 
alcohols in wine was negligible (Herjavec et al., 2001), 
while Jeromel et al. (2008) found a slight increase in their 
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concentration. Diacetyl is one of the most important 
aromatic compounds associated with MLF (Swiegers et 
al., 2005). As a chemically unstable compound, diacetyl 
can be reduced to acetoin and 2,3-butanediol. In the 
work by Antalick et al. (2013) the moment of bacterial 
inoculation had significant effect with co-inoculation 
generally stood out with higher concentrations of acetoin 
and 2,3-butanediol, however below their odor detection 
thresholds. Lasik-Kurdys et al. (2018) also observed an 
increase in acetoin and 2,3-butanediol after MLF was 
performed. 

Teran (Vitis vinifera L.) is a red grape variety mostly 
grown in the north Adriatic area, including the Croatian 
Istria viticultural subregion (Maletić et al., 2015; Rusjan et 
al., 2015; Žulj Mihaljević et al., 2020). It is characterized by 
high yield and medium level of sugar in grapes, while the 
typically high titratable acidity of its grape juice and wine, 
usually ranging from 7 to 10 g/L (Mirošević and Turković, 
2003, Plavša et al., 2012, Bubola et al., 2017) makes it 
suitable for MLF. The aim of this study was to determine 
the influence of different types of MLF (spontaneous 
and induced) as well as inoculation time (co-inoculation 
and sequential inoculation) using two commercial strains 
of Oenococcus oeni (Lalvin 31 and Uvaferm Alpha) on 
the kinetics of AF and MLF, degradation and synthesis 
of organic acids and changes in volatile compounds 
concentrations.

MATERIALS AND METHODS

Microorganisms

Saccaharomyces cerevisiae strain Uvaferm 299 
(Lallemand Inc., Canada) and pure freeze-dried cultures 
commercially available strains of Oenococcus oeni 
(Uvaferm Alpha and Lalvin 31) (Lallemand Inc., Canada) 
were used in this study.

Wine production

Teran grapes grown at Koreniki in the viticultural 
subregion of Istria, Croatia were harvested by hand, 
crushed and destemmed, homogenized and evenly 
distributed in eighteen 50 L stainless steel containers (six 

treatments in triplicate), as follows: K (control - without 
MLF), S (spontaneous MLF), KI31 (co-inoculation with 
strain Lalvin 31), KIA (co-inoculation with strain Uvaferm 
Alpha), NI31 (sequential inoculation with strain Lalvin 
31) and NIA (sequential inoculation with strain Uvaferm 
Alpha). K2S2O5 was added in the control treatment (K) 
in the dosage of 80 mg/L to prevent MLF and in the 
other treatments in the dosage of 10 mg/L. Fermaid E 
(Lallemand Inc., Canada) was used as a yeast nutrient (20 
mg/L). The temperature was maintained at 24 ± 0.5 °C in 
all treatments until the end of AF and MLF. The course 
of AF and MLF was monitored every two days until 
their completion. Maceration was carried out for seven 
days. Pressing was done at 0.8 bar using an 80L-capacity 
hydro press and samples were taken for chemical and 
volatile components analysis. After completion of AF and 
MLF (residual sugar <1.0 g/L, malic acid <0.1 g/L) the 
concentration of free SO2 was adjusted to 30 mg/L, and 
after two days the wines were raked from the gross lees. 
After two months the free SO2 was adjusted to 30 mg/L, 
the wines were re-racked and filtered with Seitz-Schenk 
EK grade filter plates and bottled in 0.75 L bottles with 
cork and stored for organoleptic evaluation.

Must and wine analysis

Chemical analysis

Basic wine parameters including alcohol content (% 
v/v), reducing sugar, titratable and volatile acidity and pH 
value were analyzed using the methods proposed by OIV 
(2016).

Analysis of organic acids

The concentration of citric, malic and lactic acid was 
determined by a UV-VIS spectrophotometer VarianCarry 
50 (Varan Inc., Harbour City, Harbour City, CA, USA) after 
enzymatic reaction using kits for enzymatic determination 
(R-Biopharm AG, Darmstadt, Germany) at a wavelength 
of 340 nm (Mato et al., 2005). Tartaric and succinic acid 
concentrations were analyzed by high-performance liquid 
chromatography using an HPLC Varian Pro Star Model500 
equipped with a MetaCarb 87H HPLC column (300 × 
7.8 mm) and a UV-VIS detector after direct injection of 
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the filtered and diluted sample (Castellari et al., 2000). 
Chromatograms were recorded at a wavelength of 214 
nm.

Volatile compounds analysis

Esters and medium chain fatty acids were 
separated from wine samples by solid-phase extraction 
technique using octadecylsilica(C18) as asorbent and 
dichloromethane as asolvent (Lukić et al., 2006). Prior 
to extraction, 3-heptanol was added as an internal 
standard. The obtained extracts were analyzed by gas 
chromatography usinga Varian 3350 gas chromatograph 
equipped with a fused silica capillary column Rtx-Wax (30 
m × 0.25 mm I.D. × 0.25 mm d.f.) and a flame ionization 
detector (FID).

Acetaldehyde, compounds formed during MLF 
(diacetyl, acetoin, ethyl lactate and 2,3-butanediol) and 
higher alcohols were determined by gas chromatography 
on a Varian 3350 gas chromatograph with the same 
equipment as mentioned before after direct injection of 
diluted and acidified sample according to the method of 
Peinado et al. (2004). 1-Pentanol was used as an internal 
standard.

Volatile compounds were identified by comparing 
their retention times to those of the pure standards. 
Calibration curves (relative peak area versus concentration 
ratio of aroma compound/internal standard) and all 
quantifications were performed by the internal standard 
method using Varian Star 4.51 software (Varian Inc., 
Harbor City, CA). All samples were analyzed in duplicates 
and mean values were used in further data processing.

Odor activity values (OAV) of volatile compounds 
were calculated as quotients of concentrations and 
corresponding odor detection thresholds (ODT) found in 
literature.

Statistical analysis

One-way analysis of variance (ANOVA) was further 
analyzed by post-hoc Fisher’s comparison of means and 
principal component analysis (PCA) were carried out using 
Statistica 13.4 software (TIBCO Software Inc., 2018).

RESULTS AND DISCUSSION

Must composition

After primary processing and unification of crushed 
grapes, chemical parameters were determined (Table 
1). The results showed a high proportion of malic acid 
in the titratable acidity values, meaning that this must 
was an ideal candidate for the application of MLF. The 
sugar content was at the level of approximately 11 vol% 
of potential alcohol, which could not have a toxic effect 
on lactic acid bacteria (LAB), according to Larsen et al. 
(2003).

Alcoholic and malolactic fermentation

The duration of AF and MLF as well as the duration 
of the LAG phase (time to onset of L-malic acid 
degradation) of MLF are shown in Table 2. LAG phase 
(LAB growth Phase I) ends and Phase II begins when 
cell numbers exceed 106 CFU/mL, and L-malic acid 
degradation begins with L-lactic acid formation (Krieger-
Weber and Silvano, 2015). The duration of AF did not 
differ significantly among the different types of MLF 
(spontaneous and inoculated), inoculation time (co-
inoculation and sequential inoculation) and LAB strains 
(Uvaferm Alpha, LALVIN31) and control treatments 
without MLF. Furthermore, the presence of LAB did not 
adversely affect the viability of the yeast as well as its 
ability to conduct alcoholic fermentation and complete 
sugars degradation (Table 3). Such findings correspond 
to those obtained by Abrahams and Bartowsky (2012), 
Muñoz et al. (2014) and Tristezza et al. (2016). In contrast, 
Suriano et al. (2015) observed a delayed onset and longer 
duration of alcoholic fermentation when applying co-
inoculation. The shortest LAG phase duration was found 
in the co-inoculation (KI) treatment whereas sequential 
and spontaneous MLF lasted the same. The total duration 
of MLF was as follows: KI31=KIA<NI31=NIA<S what is 
in agreement with the results reported by Suriano et al. 
(2015). The differences in LAG phase duration and total 
MLF duration between the treatments can be explained 
by the competitive action of yeast and bacteria towards 
nutrients such as vitamins and amino acids (Arnink 
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Table 1. Chemical parameters of Teran grape must

Organic acids (g/L)

Citric Tartaric Malic Titratable acidity Sugar (g/L) pH

0.471±0.03 3.40±0.07 4.45±0.05 8.33±0.11 187±2.0 3.24±0.03

1 Means ± SD (n=6) 

Table 2. Duration of alcoholic fermentation and LAG phase in Teran wines

Duration (days)
Treatments

Sig.
K S KI31 KIA NI31 NIA

AF 7±1 8±1 7±0 7±1 7±0 8±1 ns

LAG phase of MLF NO 81±1a 2±0b 2±0b 8±1a 8±0a ***

MLF NO 22±2a 10±1c 10±1c 16±1b 16±1b ***

1Means ± SD (n=3) with different letters are differ significantly within treatments (means separation by Fisher’s LSD test at P<0.05)
*** and ns indicate significant at p ≤ 0.001 and not significant, respectively
Abbreviations: K (control, without malolactic fermentation), S (spontaneous malolactic fermentation), KI31 (co-inoculation with Lalvin 31 bacteria 
strain), KIA (co-inoculation with Uvaferm Alpha bacteria strain), NI31(sequential with Lalvin 31 bacteria strain), NIA (sequential with Uvaferm Alpha 
bacteria strain.), NO (MLF not performed)

Table 3. Chemical analysis of Teran wines

Parameter
Treatments

Sig.
K S KI31 KIA NI31 NIA

Alcohol content (%v/v) 11.191±0.1 11.22±0.2 11.24±0.1 11.23±0.2 11.24±0.1 11.22±0.1 ns

Titratable acidity (g/L) 8.65±0.05a 6.83±0.02b 6.81±0.01b 6.71±0.01b 6.84±0.01b 6.87±0.02b ***

Citric acid (g/L) 0.42±0.09a 0.08±0.02d 0.05±0.02d 0.06±0.01d 0.17±0.04c 0.23±0.01b ***

Tartaric acid (g/L) 2.81±0.1a 2.73±0.05b 2.75±0.03b 2.44±0.07b 2.38±0.04b 2.54±0.07b ***

Malic acid (g/L) 4.18±0.1a 0.05±0.01b 0.07±0.01b 0.07±0.01b 0.05±0.01b 0.06±0.01b ***

Lactic acid (g/L) n.d. 2.81±0.1a 2.95±0.1a 2.87±0.1a 2.84±0.1a 2.86±0.1a ***

Succinic acid (g/L) 0.91±0.06a 0.76±0.02b 0.94±0.01a 0.94±0.01a 0.94±0.01a 0.93±0.04a ***

Volatile acidity (g/L) 0.51±0.1d 0.81±0.1a 0.72±0.05b 0.64±0.02c 0.70±0.01b 0.61±0.05c ***

pH 3.29±0.04c 3.59±0.1a 3.57±0.02a 3.6±0.1a 3.58±0.01a 3.45±0.1b ***

Residual sugar (g/L) 1.23±0.3 1.43±0.5 1.44±0.4 1.27±0.7 1.15±0.6 1.5±0.3 ns

1Means ± SD (n=3) with different letters are differ significantly within treatments (means separation by Fisher’s LSD test at P<0.05)
*** and ns indicate significant at p ≤ 0.001 and not significant, respectively
Abbreviations: K (control, without malolactic fermentation), S (spontaneous malolactic fermentation), KI31 (co-inoculation with Lalvin 31 bacteria 
strain), KIA (co-inoculation with Uvaferm Alpha bacteria strain), NI31(sequential with Lalvin 31 bacteria strain), NIA (sequential with Uvaferm Alpha 
bacteria strain.), NO (MLF not performed)
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and Henick-Kling, 2005; Pardo and Ferrer, 2019), the 
inhibitory effect of alcohol (Sanchez et al., 2019), low pH, 
and the presence of SO2 (Muñoz et al., 2014). Although 
the duration of MLF depends largely on LAB strain (Cañas 
et al., 2013; Sun et al., 2013), it seems that this was not 
the case in this study.

Chemical properties of wines

The results of basic chemical analysis of wines are 
shown in Table 3.

In MLF treatments wines, there was significant 
decrease in titratable acidity by an average of 1.84±0.06 
g/L and an increase in pH by 0.27±0.06. These results 
are in accordance with typical changes during MLF 
involving a decrease in titratable acidity in the range of 
1.0 to 3.0 g/L and an increase in pH by 0.1 to 0.3 units 
(Malherbe, 2010). The concentration of malic acid in all 
MLF treatments compared to the control treatment K 
was significantly lower as it was completely utilized (<0.2 
g/L), which is in line with the results obtained by Cañas et 
al. (2012, 2014). Tristezza et al. (2016) reported that the 
choice of yeast/bacteria strain combination, as well as 
the inoculation time significantly affects the breakdown 
of malic acid. In our study, observing the inoculation 
time and the LAB strain used, no significant differences 
regarding malic acid degradation were found, which is in 
accordance with the results published by Abrahamse and 
Bartowsky (2012). 

Citric acid concentration was significantly lower in all 
the MLF treatments compared to control K wines (Table 3) 
and such results are in accordance with a study by Lerm et 
al. (2010) who stated that LAB have the ability to degrade 
citric acid. Pan et al. (2011) also observed faster complete 
degradation of citric acid in a co-inoculation treatment 
compared to a sequential inoculation treatment. On 
the contrary, Cañas et al. (2014) recorded significantly 
higher concentrations of this acid after co-inoculation 
treatments. Furthermore, in this study a lower rate of 
citric acid degradation was found after the sequential 
inoculation treatment (NIA), which is agreement with the 
study of Pérez-Martín et al. (2014) who found that LAB 

strain used could notably affect the degradation of citric 
acid.

Spontaneous MLF influenced significantly higher 
concentration of volatile acidity (Table 3), which is in 
agreement with the study of Lasik-Kurdyś et al. (2017), 
and its increase can be explained by the uncontrolled 
growth of LAB species from the genera Lactobacillus, 
Leuconostoc, Streptococcus, and Pediococcus (Pretorius, 
2001). Tristezza et al. (2016) presumed that the presence 
of volatile acids could be dependent on the LAB strain as 
it was the case in this study, where lower volatile acidity 
concentrations were found in the wines where LAB strain 
Uvaferm Alpha was used, regardless of the inoculation 
time.

Aroma compounds

Modification of secondary metabolites by LAB strains 
play an important role in the odor (Swiegers et al., 2005) 
and flavor profile of wine (Lasik-Kurdys et al., 2018). 
Changes in ethyl and acetate ester concentrations are 
shown in Table 4. Matthews et al. (2004) pointed out 
LAB esterase role in the synthesis and hydrolysis of 
esters that can lead to the changes in their concentration 
(Swiegers et al., 2005). Although most authors reported 
an increase in the concentration of esters in wines where 
MLF was performed (Knoll et al., 2011; Antalick et al., 
2012), Gámbaro et al. (2001) recorded a decrease. In our 
work diethyl succinate and ethyl lactate concentrations 
significantly increased in induced but also in spontaneous 
MLF compared to the control treatment. Significantly, 
higher concentration of diethyl succinate was observed 
in wine of the spontaneous MLF treatment, probably 
because of a larger rate of esterification of succinic acid 
with ethanol. 

Comparing the inoculation time, the highest 
concentrations of diethyl succinate and ethyl lactate, 
as well as total ethyl esters, were observed in wines 
of the co-inoculation treatments, especially in wines 
produced with the Uvaferm Alpha strain (Table 4). In 
their study, Malherbe (2010) and Knoll et al. (2012) also 
presented influence of inoculation time and LAB strain 
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on ethyl esters concentrations. In this study the highest 
concentrations of ethyl acetate and hexyl acetate, as well 
as the content of total acetate esters were present in 
the wines with spontaneous MLF. Herjavec et al. (2001) 
did not record changes in ethyl acetate concentration 
between treatments with spontaneous and induced MLF. 
In contrast, Maicas et al. (1999) and Cañas et al. (2013) 
found that the bacteria strain can affect changes in 
acetate ester concentrations. In this study, significantly 
lower concentrations of these esters were observed in 
wines from the co-inoculation treatments, especially with 
the Uvaferm Alpha strain.

Concentrations of individual and total higher alcohols 
are presented in Table 5. Previously published results 
regarding the influence of MLF on higher alcohol 
concentrations are quite different. Particular authors 
(Knoll et al., 2012, and Celik et al., 2019) reported their 
increase, while some (Herjavec and Tupajić, 1998, Jeromel 
et al., 2008) detected no changes in the concentration 
of total higher alcohols. In this work, a decrease in 
total higher alcohol concentration was observed in the 
treatments with MLF compared to control K treatment 
(without MLF). Regarding the inoculation time of the LAB 
strains, higher concentrations of total higher alcohols 
were observed in the sequential inoculation treatments, 
which corresponds to the results obtained by Versari et 
al. (2015). A reduction of higher alcohol concentrations 
by co-inoculation was also found by Versari et al. (2015), 
while lower concentrations of 2-phenylethanol in wines 
produced by co-inoculation was recorded by Cañas et al. 
(2014). As shown in Table 5, concentrations of isoamyl 
alcohol and 2-phenylethanol were significantly lower 
in wines of all MLF treatments with respect to control 
K wine, and both compounds were above the odor 
detection thresholds in all analyzed wines. Co-inoculation 
treatments significantly reduced the concentrations of 
isoamyl alcohol, 2-phenylethanol and 1-propanol, and 
increased the concentrations of isobutanol and 1-hexanol. 

Although the lipolytic activity of LAB has not been 
investigated in detail, Matthews et al. (2004) stated 

the possibility that some LAB`s may form lipases in a 
substrate of non-wine origin. Nevertheless, in numerous 
studies (Pozo-Bayón et al., 2005; Celik et al., 2019) the 
changes in volatile fatty acid concentrations by bacterial 
were recorded. These compounds are responsible for 
fatty, rancid, and buttery notes in wines. The content of 
individual and total fatty acids is shown in Table 5, and 
their concentrations varied not only depending on the 
type of MLF but also on the LAB used. The highest values 
of these acids were found in wine of the spontaneous 
MLF treatment, while the lowest values were found in 
KI31 treatment wine.

Acetaldehyde, as one of the most important carbonyl 
compound formed during alcoholic fermentation, can 
be reduced during MLF. As reported by other authors 
(Osborne et al., 2000; Ruiz et al., 2012), MLF influenced 
a decrease in acetaldehyde concentrations (Table 6). 
Although the differences were not significant, the 
lowest content of this compound was recorded in the 
co-inoculation treatment where LAB strain Uvaferm 
Alpha (KIA) was used. Furthermore, significantly higher 
concentrations in wines of all the MLF treatments were 
reported for diacetyl, acetoin, and 2,3-butanediol (Table 
6), which agrees with numerous other studies (Cañas 
et al., 2012; Antalick et al., 2013; Tristezza et al., 2016; 
Lasik-Kurdys et al., 2018; Celik et al., 2019).

Principal component analysis 

Principal component analysis (PCA) was applied on a 
dataset consisting of all the treatments as cases (Figure 
1a) and the concentrations of volatile compounds with 
OAV>1 as variables (Figure 1b). The first two principal 
components (PC’s) obtained were found to have an 
eigenvalue greater than 1 and cumulatively explained 
63.25% of the variability among the data. Eigenvector 
analysis showed that isobutanol, acetaldehyde, ethyl 
hexanoate, and diacetyl had the greatest effect on the 
first principal component (PC 1) and isoamyl acetate, 
caproic acid, ethyl octanoate, and isoamyl alcohol on the 
second principal component (PC 2). 
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Table 4. Concentrations (mg/L) of ethyl and acetate esters in Teran wines

Compounds Sig.ODT K S KI31 KIA NI31 NIA

(mg/L) Mean OAV Mean OAV Mean OAV Mean OAV Mean OAV Mean OAV

Ethyl esters

Diethyl succinate 200[1]† 0.091±0.02e 0 1.48±0.03a 0 0.21±0.01c 0 0.43±0.01b 0 0.15±0.02d 0 0.17±0.01d 0 ***

Ethyl lactate 154.6[1]†† 4.27±1.22e 0 69.35±2.77b 0.4 67.30±2.07b 0.4 78.62±1.45a 0.5 47.85±2.12d 0.3 60.2±1.75c 0.4 ***

Ethyl hexanoate 0.014[2]††† 0.17±0.01c 12.4 0.21±0.03b 14.8 0.21±0.01b 15 0.25±0.01a 17.9 0.23±0.02ab 16.4 0.22±0.01ab 15.7 **

Ethyl octanoate 0.005[2]††† 0.18±0.01b 35.3 0.14±0.02c 28 0.15±0.01c 30 0.16±0.01bc 32 0.22±0.01a 44.7 0.15±0.01c 30.7 ***

Ethyl decanoate 0.2[2]††† 0.04±0.02 0.2 0.06±0.02 0.3 0.06±0.01 0.3 0.07±0.02 0.4 0.06±0.01 0.3 0.04±0.01 0.2 ns

∑ ethyl esters 4.76e 71.24b 67.93b 79.53a 48.51d 60.78c ***

Acetate esters

Ethyl acetate 12[3]† 55.4±2.79bc 4.6 65.55±0.48a 5.5 48.36±3.0d 4.0 36.29±1.11e 3 56.5±0.41b 4.7 53.17±0.78c 4.4 ***

Hexyl acetate 0.67[4]† 0.15±0.03b 0.2 0.2±0.02a 0.3 0.17±0.01b 0.2 0.17±0.01b 0.2 0.17±0.01b 0.2 0.17±0.01b 0.2 *

2-phenyl acetate 0.25[2]††† 0.27±0.02b 1.1 0.28±0.02b 1.1 0.29±0.02ab 1.2 0.32±0.02a 1.3 0.30±0.03ab 1.2 0.26±0.01b 1 *

Isoamyl acetate 0.03[2]††† 0.46±0.02b 15.4 0.43±0.12bc 14.3 0.35±0.02c 11.8 0.45±0.01bc 14.9 0.60±0.02a 19.9 0.50±0.03b 16.5 **

∑ acetate esters 56.28bc 66.47a 49.18d 37.23e 57.57b 54.09c ***

1 Means ± SD (n=3) with different letters differ significantly within treatments (means separation by Fisher’s LSD test at P<0.05)
*, **, *** and ns indicate significant at p ≤ 0.05, p ≤ 0.01, p ≤ 0.001 and not significant, respectively
Abbreviations: ODT (odor detection threshold), K (control, without malolactic fermentation), S (spontaneous malolactic fermentation), KI31 (co-inoculation with Lalvin 31 bacteria strain), KIA 
(co-inoculation with Uvaferm Alpha bacteria strain), NI31(sequential with Lalvin 31 bacteria strain), NIA (sequential with Uvaferm Alpha bacteria strain), OAV-odor active values (calculated by 
dividing the mean concentration of the aromatic compound by the ODT value)
Odor detection threshold in the literature ([1] Bleve et al., 2016, [2] Ferreira et al., 2000, [3] Budić-Leto et al., 2010, [4] Zhao et al., 2017), † -in 10 - 12% water/ethanol mixture, ††- in wine, †††- in 
synthetic wine(11% v/v ethanol, 7g/L glycerin, 5g/L tartaric acid, pH adjusted to 3.4 with 1M NaOH)
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Table 5. Concentrations (mg/L) of higher alcohols and fatty acids in Teran wines

Compounds Sig.ODT K S KI31 KIA NI31 NIA

(mg/L) Mean OAV Mean OAV Mean OAV Mean OAV Mean OAV Mean OAV

Higher alcohols

1-Butanol 150[1]† 0.601±0.12 0 0.58±0.13 0 0.69±0.24 0 0.58±0.15 0 0.69±0.30 0 0.76±0.21 0 ns

1-Hexanol 8[2]†† 1.31±0.05c 0.2 1.24±0.06d 0.2 1.44±0.05b 0.2 1.83±0.01a 0.2 1.40±0.03b 0 1.39±0.02b 0.2 ***

1-Propanol 306[3]†† 26.91±3.71ab 0.1 31.4±2.44a 0.1 23.84±3.25b 0.1 22.16±1.14c 0.1 31.39±1.61a 0.1 27.90±1.96ab 0.1 **

2-Phenylethanol 14[2]†† 70.91±3.09a 5.1 51.75±1.09c 3.7 54.64±1.37bc 3.9 57.48±0.66b 4.1 57.4±2.67b 4.1 68.76±3.16a 4.9 ***

Isobutanol 40[2]†† 72.14±1.69e 1.8 80.73±1.44bc 2 81.25±1.36b 2 88.30±1.20a 2.2 75.07±0.51d 1.9 78.29±2.01c 2 ***

Isoamyl alcohol 30[2]†† 380.26±2.42a 12.7 292.53±2.16d 9.8 271.10±1.03e 9 338.63±0.53c 11.3 370.34±0.58b 12.3 381.69±1.11a 12.7 ***

∑ higher alcohols 552.133 a 458.223 d 432.966 e 508.973c 536.290 b 558.783 a ***

Fatty acids

Caproic acid 0.42[2]†† 2.09±0.19b 5 2.14±0.19ab 5.1 1.94±0.12b 4.6 2.12±0.05b 5 2.49±0.03a 5.9 2.05±0.05b 4.9 **

Caprylic acid 0.5[2]†† 1.65±0.05bc 3.3 1.85±0.04ab 3.7 1.51±0.04c 3 1.96±0.05a 3.9 1.76±0.15b 3.5 1.79±0.08ab 3.6 ***

Capric acid 1[2]†† 0.27±0.06bcd 0.3 0.46±0.01a 0.5 0.3±0.02bc 0.3 0.34±0.02b 0.3 0.2±0.01d 0.2 0.25±0.02c 0.3 ***

Lauric acid 1[4]††† 0.18±0.02a 0.2 0.11±0.01b 0.1 0.03±0.01d 0 0.08±0.01bc 0.1 0.05±0.01cd 0.1 0.03±0.02d 0 ***

∑ fatty acids 4.19ab 4.55a 3.78b 4.49a 4.51a 4.12ab ***

1 Means ± SD (n=3) with different letters differ significantly within treatments (means separation by Fisher’s LSD test at P<0.05).
**, *** and ns indicate significant at p ≤ 0.01, p ≤ 0.001 and not significant, respectively.
Abbreviations: ODT (odor detection threshold), K (control, without malolactic fermentation), S (spontaneous malolactic fermentation), KI31 (co-inoculation with Lalvin 31 bacteria strain), KIA 
(co-inoculation with Uvaferm Alpha bacteria strain), NI31(sequential with Lalvin 31 bacteria strain), NIA (sequential with Uvaferm Alpha bacteria strain), OAV-odor active values (calculated by 
dividing the mean concentration of the aromatic compound by the ODT value).
Odor detection threshold in the literature([1] Bleve et al., 2016, [2] Ferreira et al., 2000,[3] Celik et al.,2019, [4] Li et al., 2008), † - in 10% (v/v) ethanol–water solution, adjusted to pH 3.5 with 
tartaric acid, †† - in synthetic wine (11% v/v ethanol, 7g/L glycerin, 5g/L tartaric acid, pH adjusted to 3.4 with 1M NaOH),††† - in12% ethanol/water mixture containing 5 g/L tartaric acid at pH 3.2
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Table 6. Concentrations (mg/L) of acetaldehyde, diacetyl, acetoin and 2,3-butanediolin Teran wines

Compounds Sig.ODT K S KI31 KIA NI31 NIA

(mg/L) Mean OAV Mean OAV Mean OAV Mean OAV Mean OAV Mean OAV

Acetaldehyde 0.5[1]† 59.261±2.12a 119 9.12±0.19b 18.2 4.48±0.58c 9 3.05±0.16c 6.1 3.93±0.32c 7.9 5.37±0.34c 10.7 ***

Diacetyl 0.1[2]†† 1.61±0.04c 16.1 7.06±0.07b 70.6 8.73±0.35a 87.3 7.24±0.44b 72.4 8.49±0.28a 84.9 8.45±0.33a 84.5 ***

2.3-butanediol 600[3]††† 490.05±9.65e 0.8 686.75±5.6b 1.1 820.55±1.45a 1.4 692.86±5.88b 1.2 564.42±3.11d 0.9 620.64±4.87c 1 ***

Acetoin 150[3]††† 4.22±0.18c 0.0 7.0±0.22b 0.0 8.41±0.61ab 0.1 10.2±1.85a 0.1 10.06±0.72a 0.1 10.57±0.47a 0.1 ***

1 Means ± SD (n=3) with different letters differ significantly within treatments (means separation by Fisher’s LSD test at P<0.05)
*** indicate significant at p ≤ 0.001
Abbreviations: ODT (odor detection threshold), K (control, without malolactic fermentation), S (spontaneous malolactic fermentation), KI31 (co-inoculation with Lalvin 31 bacteria strain), KIA 
(co-inoculation with Uvaferm Alpha bacteria strain), NI31 (sequential with Lalvin 31 bacteria strain), NIA (sequential with Uvaferm Alpha bacteria strain), OAV-odor active values (calculated by 
dividing the mean concentration of the aromatic compound by the ODT value)
Odor detection threshold in the literature([1] Guth, 1997, [2] Ferreira et al., 2000, [3] Bartowsky and Henschke, 2004),† - in 10 - 12% water/ethanol mixture, †† - in synthetic wine (11% v/v 
ethanol, 7g/L glycerin, 5g/L tartaric acid, pH adjusted to 3.4 with 1M NaOH),††† - in wine
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Figure 1. Principal component analysis (PCA) Teran wines: (a) samples (cases); (b) 12 volatile compounds with OAV>1(variables)

Figure 1 shows the results for the first two principal 
components which together explained 63.25% of the 
total variability (PC1 36.58%, PC2 26.67%). The first 
principal component (PC1) showed the separation of 
two groups: group 1 (S, KIA and KI31) and group 2 (NI31, 
NIA and K). Along the direction of the second principal 
component (PC2), within group 1, KIA treatment was 
separated from S and KI31 treatments. Furthermore, 
separation was also observed within group 2 where 
treatment K was separated from treatments NIA and 
NI31. The control treatment (K) located on the left side 
of the graph was characterized by higher concentration 
of acetaldehyde and 2-phenylethanol with respect to all 
the other treatments.

CONCLUSIONS

Malolactic fermentation significantly decreased 
titratable acidity and increased pH value of Teran wines. 
Complete degradation of malic acid was observed 
in all the MLF treatments regardless of inoculation 
time and LAB strain used. A significant decrease in 
the concentration of citric acid was found in all wines 
subjected to MLF, with a significantly higher degradation 

Abbreviations: K (control, without malolactic fermentation), S (spontaneous malolactic fermentation), KI31 (co-inoculation with Lalvin 31 bacteria 
strain), KIA (co-inoculation with Uvaferm Alpha bacteria strain), NI31(sequential with Lalvin 31 bacteria strain), NIA (sequential with Uvaferm Alpha 
bacteria strain.), AA (acetaldehyde), EAc (ethyl acetate), 2-PHE (2-phenylethanol), IA (isoamylalcohol), EO(ethyl octanoate), IAAc (isoamyl acetate), 
C6H12O2 (caproic acid), C8H16O2 (caprylic acid), EH (ethyl hexanoate), 2-Pac (2-phenyl acetate), DI (diacetyl), IB (isobutanol)

in the co-inoculation treatment where LALVIN 31 strain 
was used. The highest concentration of volatile acidity 
was found in wines in which spontaneous MLF was 
performed. The moment of LAB inoculation did not 
affect the concentration of volatile acidity, while lower 
concentrations were present in wines produced by the 
Uvaferm Alpha strain. The concentrations of higher 
alcohols were lower in MLF treatments. The type of MLF, 
inoculation time, and the LAB strain used significantly 
affected the concentration of ethyl esters in wines of all 
the MLF treatments, while a significant increase in ethyl 
acetate and total acetate esters was observed only in 
wines obtained by spontaneous MLF. The most abundant 
volatile fatty acids were caproic and caprylic acid with the 
concentrations above the sensory threshold regardless 
of the treatment. Significantly, lower concentrations 
of acetaldehyde and higher concentrations of diacetyl, 
acetoin, and 2,3-butanediol were found in wines of all the 
MLF treatments. The LAG phase and the total duration of 
MLF were the shortest in the co-inoculation treatments 
and the presence of LAB did not affect the alcoholic 
fermentation kinetic.
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