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Abstract 

Parasitic plants of genera Orobanche and Phelipanche germinate after exposition to 
chemical signals exuded by roots of the host plants. The most studied germination 
stimulants belong to strigolactones (SLs), the newly discovered plant hormones 
which are stimulating hyphal branching of arbuscular mycorrhizal fungi and are 
involved in regulation of shoot and root architecture of plants. However, little is known 
about the effect of strigolactones on germination of non-weedy broomrapes. The 
objective of our study was to investigate the sensitivity of seeds of non-weedy 
broomrapes to synthetic analogue of SLs, GR24. The seeds of non-weedy 
broomrapes Orobanche alba, O. alsatica, O. caryophyllacea, O. elatior, O. flava, O. 
lutea, O. pallidiflora, O. reticulata, Phelipanche arenaria, P. purpurea and weedy 
species P. ramosa were collected in natural and cropland plant communities in 
Slovakia. Seeds of P. ramosa and P. purpurea  were highly sensitive to GR24. On 
the other hand, effectivity of GR24 in inducing germination of several wild species, O. 
alba, O. caryophyllacea and P. arenaria was low, while the stimulant shown to be 
completely not effective on other non-weedy species O. alsatica, O. elatior, O. flava, 
O. lutea, O. pallidiflora, and O. reticulata. The results point out there are differences 
in the requirement for germination signals that possibly depend on the host.   

Keywords: GR24, germination stimulant, Orobanche, Phelipanche, strigolactone  

Abstrakt  

Parazitické rastliny rodov Orobanche a Phelipanche klíčia len po expozícii 
chemických signálnych molekúl, ktoré sú vylučované koreňmi hostiteľských rastlín. 
Najviac študované stimulátory klíčenia sú strigolaktóny (SLs), ktoré boli nedávno 
charakterizované a zaradené medzi rastlinné hormóny. Strigolaktóny stimulujú 
vetvenie arbuskulárnych mykoríznych húb a podieľajú sa aj na architektúre koreňov a 
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výhonkov. Je však málo informácií o vplyve strigolaktónov na klíčenie divorastúcich 
záraz. Cieľom našej práce bolo charakterizovať citlivosť divorastúcich záraz k 
syntetickému analógu strigolaktónov, GR24. Semená divorastúcich záraz Orobanche 
alba, O. alsatica, O. caryophyllacea, O. elatior, O. flava, O. lutea, O. pallidiflora, O. 
reticulata, Phelipanche arenaria, P. purpurea a burinného zárazovca P. ramosa 
pochádzali z poľných kultúr a prirodzených spoločenstiev Slovenska. Semená  P. 
ramosa a prekvapujúco aj semená P. purpurea boli vysoko citlivé ku GR24.  Na 
druhej strane,  GR24 bol menej efektívny pri indukcii klíčenia niektorých divorastúcich 
druhov O. alba, O. caryophyllacea, P. arenaria, a úplne neefektívny pri divorastúcich 
druhoch  O. alsatica, O. elatior, O. flava, O. lutea, O. pallidiflora a O. reticulata. 
Výsledky naznačujú, že pre adaptáciu a špecifický výber hostiteľskej rastliny môže 
byť dôležitým parametrom aj životný cyklus hostiteľov. Výsledky poukazujú na 
rozdiely v požiadavkách na stimulátory klíčenia, ktoré môžu vyplývať zo zloženia 
stimulačných látok vylučovaných hostiteľmi.  

Kľúčové slová: GR24, Orobanche, Phelipanche, stimulátor klíčenia, strigolaktóny 

 

Introduction 

Parasitic plants belonging to Orobanchaceae are considered as dangerous pests 
causing substantial losses of crop production in many countries of the world.  

Out of approximately 170 Orobanchaceae species (Weiss-Schneeweiss, et al., 
2006), 11 species are serious threat to food security. From genus Striga, three 
species S. hermonthica, S. aspera, and S. forbesii parasitise warm-climate cereal 
crops across Africa, including maize, sorghum, upland rice and S. gesnerioides 
parasitises dicotyledonous (broad leaved) hosts. Orobanche cumana, O. crenata, 
Phelipanche ramosa and P. aegyptiaca are important parasitic weeds damaging 
many agricultural crops in Europe, North Africa, Middle East and Asia (Parker, 2012). 
P. ramosa, the only weedy Phelipanche species in Slovakia, decreased tomato yield 
in Slovakia by 43-53% (Cagáň and Tóth, 2003), in Greece by 25% (Parker, 2009), 
tobacco yield in Turkey by 33% (Emiroglu, et al., 1987) and rapeseed yield in France 
by 85-90% (Gibot-Leclerc, et al., 2001). Non-weedy brooomrapes are growing in wild 
plant communities and range of their hosts is limited, they parasitize one or few 
specific hosts only (Teryokhin, 1997). 

Orobanche and Phelipanche spp. are obligate holoparasites. They are lacking 
chlorophyll and therefore they must attach to suitable host from which developing 
seedling acquire all nutrients and water to complete life cycle. Small seeds have very 
limited reserves for developing seedling. Therefore, they have to attach to the host 
root within a few days after germination. To assure, that seeds will germinate in the 
close vicinity of the host root, parasitic plants developed specific recognition 
mechanism. The seeds must be exposed to specific chemical signal exuded from the 
roots of host plants to be able to germinate. Several chemical compounds were 
identified as a germination inducing compounds. They include dihydrosorgoleone, 
the strigolactones, the sesquiterpene lactones (Bouwmeester, et al., 2003), 
dehydrocostus lactone (Joel, et al., 2011), peagol, peagoldione (Evidente, et al., 
2009) and glucosinolate-breakdown products (Auger, et al. 2012). The most studied 
compounds are host-derived strigolactones (SLs). Strigolactones are apocarotenoids 
(Matusova, et al., 2005) and they were recently characterized as new plant hormones 
(Gomez-Roldan, et al., 2008; Umehara, et al., 2008). SLs induce germination of 
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parasitic plants,  the strigolactones have been shown beneficial for establishment of 
plant-arbuscular mycorrhizal fungi (AMF) symbiosis by induction of hyphal branching  
(Akiyama et al. 2005), SLs are involved in regulation of shoot branching and root 
morphology (Gomez-Roldan, et al., 2008; Umehara, et al., 2008; Ruyter-Spira, et al., 
2011; Kapulnik, et al., 2011) and are involved in symbiotic interaction of plants with 
nitrogen-fixing bacteria (Foo and Davies, 2011). Until now, 19 naturally occurring SLs 
were characterized (de Saint Germain, et al., 2013). Currently, biosynthesis and 
perception mechanism of strigolactones in plants is extensively studied by many 
research groups. Strigolactones are biosynthesized from the carotenoid pathway 
(Matusova, et al., 2005), but complete biosynthetic pathway is not discovered yet. A 
model for the interaction of the germination stimulants with their receptor has been 
proposed by Zwanenburg and co-workers ((Wigchert and Zwanenburg, 1999).  
Strigolactone-biosynthetic and perception pathway is studied mainly by analyses of 
mutants with SL-deficient and SL-insensitive mutants of Arabidopsis, rice and pea. 
Recent knowledge on SLs biosynthesis and perception was reviewed by Seto and 
Yamaguchi (2014). The characterization of Arabidopsis (max2) (Stirnberg, et al., 
2002), rice (d3) (Ishikawa, et al. 2005), and pea (rms4) (Johnson, et al., 2006) 
mutants revealed involvement of the F-box protein in perception of SLs. This protein 
is a subunit of SCF ubiquitin E3 ligase for proteasome-mediated proteolysis. D53 
protein (in rice) was identified as a repressor of strigolactone downstream responses 
(Jiang, et al., 2013; Zhou, et al., 2013). Jiang, et al. (2013) and Zhou, et al. (2013) 
proposed model, in which strigolactone binding to D14 protein (in rice) induce 
conformational changes of D14 and subsequent polyubiquitination of D53 for 
degradation.  

Identification and isolation of natural strigolactones is very difficult due to very low 
level in plants and rhizosphere. Therefore, synthetic strigolactone analog GR24 (Fig. 
1) is used in prevalent studies dealing with dormancy and germination of weedy 
parasitic plants belonging to Orobanche, Phelipanche and Striga spp.  The objective 
of our study was to investigate the sensitivity of seeds of non-weedy broomrapes 
(Orobanche alba, O. alsatica, O. caryophyllacea, O. elatior, O. flava, O. lutea, O. 
pallidiflora, O. reticulata, Phelipanche arenaria and P. purpurea) and weedy P. 
ramosa to synthetic analogue of SLs, GR24. 

Materials and Methods  

Plant material 

Seeds of Phelipanche ramosa (L.) Pomel, P. arenaria (Borkh.) Pomel, P. purpurea 
(Jacq.) Soják, Orobanche reticulata Wallr., O. alba Stephan ex Willd., O. 
caryophyllacea Sm., O. lutea Baumg., O. elatior Sutton, O. flava Mart. Ex F.W. 
Schultz and O. alsatica Kirschl. were collected from dry inflorescences in natural 
communities and fields in Slovakia  (Tab. 1). All seed samples were collected, treated 
and kept under lab conditions in the same manner.  

Table 1.  
The broomrapes taxa used, their origin and host plants 
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Species Location Location 
co-ordinates 

Host plant  

Weedy broomrapes 

Phelipanche ramosa Branovo 48°00'N 18°17'E Solanum 
lycopersicum  

Phelipanche ramosa Domadice 48°10'N 18°46'E Nicotiana tabacum  

Wild broomrapes 

Phelipanche purpurea Domica 1 48°28'N 20°28'E Achillea spp. 
Phelipanche purpurea Domica 2 48°28'N 20°32'E Achillea spp. 
Phelipanche arenaria Nitrica 48°41'N 18°25'E Artemisia campestris 
Orobanche alba Nitrica 48°41'N 18°25'E Thymus serpyllum 
Orobanche 
caryophyllacea 

Hačava 48°39'N 20°51'E Galium mollugo 

Orobanche alsatica Turňa nad 
Bodvou 

48°36'N 20°51'E Peucedanum cervaria 

Orobanche elatior Penhýbel 48°32'N18°32'E Centaurea scabiosa 
Orobanche flava Blatnická dolina 48°54'N 18°57'E Petasites albus 
Orobanche flava Oravská 

Polhora 
49°33'N 19°24'E Petasites albus 

Orobanche flava Východná 49°03'N 19°53'E Petasites albus 
Orobanche lutea Gemer 48°27'N 20°18'E Medicago falcata 
Orobanche pallidiflora Tisovec 48°42'N 19°52'E Cirsium spp. 
Orobanche reticulata Pusté 48°59'N 19°36'E Carduus glaucinus 

 

Sterilization and conditioning 

Seeds of parasitic plants Phelipanche and Orobanche spp. require period of 
conditioning to break dormancy and to be able to respond to germination stimulant. 
Sterilization and conditioning of seeds were performed according to Matusova et al. 
(2004). Briefly, seeds were sterilized in 2% commercial bleach containing 0.02% (v/v) 
Tween 20 for 5 min and washed several times in sterile demineralized water. 
Approximately 120-150 seeds were spread on each 8 mm (diameter) glass fibre filter 
paper (GFFP) disc. 12 discs were placed into 9 cm Petri dish containing 2 layers of 
Whatmann filter paper wetted with 2.7 ml of sterilized demineralized water. Petri 
dishes were sealed with parafilm and incubated in darkness at 21˚C for 14 days to 
break dormancy (Matusova et al. 2004). 

 

Germination bioassay 

GFFP discs with conditioned seeds were shortly dried in a flow cabinet to remove 
surplus moisture and transferred into new Petri dishes containing ring of wet filter 
paper according to Matusova et al. (2004). The synthetic strigolactone analogue 
GR24 at the concentrations of 100, 10, 1, 0.1, 0.01, 0.001, 0.0001, 0.00001 and 
0.000001 mg*l -1 was added to each of three replicate disks (40 µl/ disk). 
Demineralized water was used as a negative control. Petri dishes were sealed with 
parafilm and incubated in darkness at 26 ˚C for 7 days. The germinated and 
nongerminated seeds were counted using Zeiss stereomicroscope DV4.  
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Calculation of logistic dose–response curves 

Calculation of dose-response curve was used to quantify the response of the seeds 
to the germination stimulant GR24. Logistic dose-response curves with non-linear 
regression were calculated using GraphPad Prism, Version 6.05 (GraphPad 
Software, Inc.).    

 

Results and Discussion 

The sensitivity of Orobanche spp. and Phelipanche spp. seeds to the germination 
stimulant GR24 at broad range of GR24 concentrations (from 0.000001 mg*l-1 up to 
100 mg*l-1) was tested. Germination was concentration dependent for all responsive 
species and germination assays showed different sensitivity of weedy and non-
weedy broomrape seeds to the applied GR24 (Fig. 1, Tab. 2).  
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Figure 1.  

Dose-response curves for germination induced by GR24 in (A) weedy Phelipanche 
ramosa (Br – locality Branovo, Do – locality Domadice) and (B) wild 
Orobanche/Phelipanche spp. Seeds of P. ramosa Br (●), P. ramosa Do (▲), P. 
purpurea1 (□),  P. purpurea2 (■), O. alba (x), P. arenaria (∆) and O. caryophylacea 
(○) were preconditioned at 21˚C for 14 days. Each point represents mean of three 
replicates ± SE. Dose-response curves with non-linear regression were calculated 
using GraphPad Prism, Version 6.05. GR24 logistic dose-response curve parameters 
are shown in Tab. 2. 

Table 2. 

Parameters of GR24 dose-response curves of Phelipanche and Orobanche spp. in 
Fig. 1A, B. Rmax – maximum germination induced by GR24, [EC]50 – dose required to 
induce 50 % of maximum germination, p – Hill-coefficient, negative values and 
“~”(ambiguous) values are the results of the curve fitting. 

Species Rmin (%) Rmax (%) [EC]50 (mg.l-1) p  

P. ramosa Br -0.071 98 0,000006 1,506 

P. ramosa Do 2.966 80 0,000008 1,070 

P. purpurea1 0.145 80 0,000051 1,400 

P. purpurea2 1.110 81 0,004025 2,531 

O. alba -0.013 8 7,5480 1,015 

P. arenaria 0.000 27 ~ 0,6139 ~ 5,371 

O. caryophyllacea 0.000 12 ~ 0,9786 ~ 7,334 

  

GR24 was highly effective in inducing germination of weedy P. ramosa, what is 
consistent with previous findings (Fernández-Aparicio, et al., 2009; Thorogood, et al., 
2009; Matusova et al., unpublished data). P. ramosa germinated up to 99% at 
exposition to 10-4 mg*l-1 for population Branovo (Fig. 2A). Seeds collected at locality 
Domadice were slightly less viable and maximal germination reached 87 %. The 
sensitivity of both seed populations is about the same (for both population in range of 
10-6 mg*l-1 GR24 to induce half maximal germination, Tab. 2).  The different 
geographic regions and growth conditions of different host plants, are most likely 
reasons for observed differences in viability between the two P. ramosa populations. 
Seeds of other weedy broomrapes including O. cumana (EC50 at 10-3 mg*l-1, 

Matusova, et al., 2004), and O. crenata (EC50 at 10-2 mg*l-1, Matusova, et al., 
unpublished data) were also highly sensitive to the GR24.  

Compared to weedy P. ramosa, we observed less or no stimulation of non-weedy 
broomrapes seeds germiantion by GR24. Seeds of Orobanche alba, O. 
caryophyllacea, P. arenaria and P. purpurea responded to germination stimulant 
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GR24. Germination of O. alba, O. caryophyllacea, and P. arenaria were induced only 
by concentration of GR24 1 mg.l-1 or higher. P. purpurea was intermediately sensitive 
to GR24, half maximal germination was induced by a concentration of 10-5 mg*l-1 for 
population P. purpurea1 and by 10-3 mg*l-1 GR24 for P. purpurea2. In this species we 
observed the decrease in the seed germination upon higher concentrations of GR24 
(1-100 mg*l-1, Fig. 2B). The similar effect was found for Orobanche crinita and 
Orobanche densiflora (Fernández-Aparicio, et al., 2011), S. asiatica, S. hermonthica, 
S. aspera and O. crenata (Wigchert, et al., 1999). The high concentration of 
germination stimulant does not necessarily induce maximal germination of seeds and 
the non-optimal high concentration of GR24 might inhibit germination of parasitic 
weed seeds.  Therefore the optimal conditioning and concentration of germination 
stimulant should be tested before routine germination tests.  

Seeds of O. alsatica, O. elatior, O. flava, O. lutea, O. pallidiflora, and O. reticulata did 
not germinate after treatment with GR24. A number of other wild broomrape species 
were discovered not to respond to GR24 likewise (Fernández-Aparicio, et al., 2008; 
Thorogood, et al., 2009). Thus it seems to be questionable to utilize GR24 as the 
universal standard for germination tests.  

Seeds of all species were conditioned and germination tests performed under the 
same conditions. Increase of germination stimulant concentration may lead to 
reduction of radicle length or to short radicle not emerging from the seed coat (Joel 
and Bar, 2013). Despite of the different sensitivity of seeds to GR24 resulting to 
different germination percentage, emerging seedlings of all responding Phelipanche 
spp. and Orobanche spp. in our experiments have an elongated radicles, which 
indicate optimal concentrations for all species tested.  

Weediness or non-weediness of parasitic plants is based basically on the host plant 
and the damage they cause to economically important agricultural crops (Rubiales, et 
al., 2009; Parker, 2013). It is obvious that weedy broomrape species are less 
specialized in germination requirements; their seeds germinate upon exposition to 
different plant root exudates (Fernández-Aparicio, et al., 2009), purified 
strigolactones or GR24 and grow on various annual crops. However, there are a few 
known exceptions. In contrast with other weedy broomrapes, O. cumana evolved as 
a weedy species more recently (Parker, 2013).  O. cumana specifically attacks 
sunflower (Helianthus annuus L.) and seeds of O.  cumana are less responsive to 
strigolactone analogue GR24 and more responsive to sunflower root exudate 
(Fernández-Aparicio, et al. 2009). Indeed, seeds of O. cumana are highly sensitive to 
dehydrocostus lactone, which was recently identified as an active germination 
stimulant for O. cumana in sunflower root exudates (Joel, et al., 2011). The 
importance of other compounds for germination of broomrapes was also 
demonstrated for weedy P. ramosa and its host Brassica napus. In the rhizosphere of 
non-mycotrophic B. napus were identified isothiocyanates, which are breakdown 
products of glucosinolates, to be the main germination stimulants for P. ramosa 
present in B. napus (Auger, et al., 2012). The authors did not detect any known 
strigolacone by ultraperformance liquid chromatography-tandem mass spectrometry 
in the rhizosphere. The low/no exudation of strigolactones by roots Arabidopsis 
thaliana (Brassicaceae family) was observed by Kohlen, et al. (2011). The authors 
detected two strigolactones (orobanchol and orobanchyl acetate) in root exudates 
and also other no strigolactones-like compounds with the germination-inducing 
activity on P. ramosa seeds.  
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In contrast to weedy broomrapes (except O. cumana), the non-weedy species have 
only one or just a few, usually perennial hosts (Teryokhin, 1997). For instance, 
Artemisia campestris is practically the only host of P. arenaria (Piwowarczyk and 
Przemysky, 2010), Centaurea scabiosa is a host of O. elatior (Zázvorka 2010) and 
Orobanche ballotae A. Pujadas is strictly monophagous on Ballota hirsuta (Pujadas 
Salva 1997). We detected very low or no germination of non-weedy broomrapes 
induced by GR24. Wild species have probably more specific germination 
requirements. Fernández-Aparicio, et al. (2009) tested seeds of nine broomrape 
species for their sensitivity to root exudates of 41 different plants. Seeds of non-
weedy O. hederae, O. gracilis and O.  densiflora highly specifically germinated with 
one or a few root exudates only. Our results are in agreement with work of 
Fernández-Aparicio, et al. (2009). In general, GR24 was much less effective for non-
weedy broomrape.  

The single broomrapes might require unique combination and concentrations of 
signaling chemicals (Fernández-Aparicio, et al., 2011; Höniges, et al., 2012). In wild 
ecosystem there are growing many different plants (potential hosts) in the same area, 
colonized by arbuscular mycorrhizal fungi. They also might produce less 
strigolactones or strigolactones might be released to the rhizosphere in very low 
quantity. Therefore, other compounds might be crucial for germination of some non-
weedy broomrapes as it was already shown for some weedy species.   
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