Publishers: University of Zagreb, Faculty of Agriculture, Zagreb, Croatia  |  Slovak University of Agriculture in Nitra, Faculty of Agrobiology and Food Resources, Nitra, Slovakia  |  Hungarian University of Agriculture and Life Sciences, Georgikon Campus, Keszthely, Hungary  |  Agricultural University Plovdiv, Plovdiv, Bulgaria  |  University of South Bohemia, Faculty of Agriculture and Technology, České Budějovice, Czech Republic  |  Bydgoszcz University of Science and Technology, Bydgoszcz, Poland  |  University of Agricultural Sciences and Veterinary Medicine, Cluj - Napoca, Romania  |  University of Kragujevac, Faculty of Agronomy Čačak, Čačak, Serbia  |  Agricultural Institute of Slovenia, Ljubljana, Slovenia

DOI: https://doi.org/10.5513/JCEA01/14.2.1231

Original scientific paper

Land-Use Implications to Energy Balances and Greenhouse Gas Emissions on Biodiesel from Palm Oil Production in Indonesia

2013, 14 (2)   p. 513-524

Soni HARSONO, Bronto SUBRONTO

Abstract

The objectives of this study are to identify the energy balance of Indonesian palm oil biodiesel production, including the stages of land use change, transport and milling and biodiesel processing, and to estimate the amount of greenhouse gas emissions from different production systems, including large and small holder plantations either dependent or independent, located in Kalimantan and in Sumatra. Results show that the accompanied implications of palm oil biodiesel produced in Kalimantan and Sumatra are different: energy input in Sumatra is higher than in Kalimantan, except for transport processes; the input/output ratios are positive in both regions and all production systems. The findings demonstrate that there are considerable differences between the farming systems and the locations in net energy yields (43.6 to 49.2 GJ t-1 biodiesel yr-1) as well as greenhouse gas emissions (1969.6 to 5626.4 kg CO2eq t-1 biodiesel yr-1). The output to input ratios are positive in all cases. The largest greenhouse gas emissions result from land use change effects, followed by the transesterification, fertilizer production, agricultural production processes, milling and transportation. Ecosystem carbon payback times range from 11 to 42 years.

Keywords

palm oil biodiesel, energy balances, greenhouse gas emissions, land-use change

 Download      Find similar journal articles

Share article

email    linkedin    facebook    twitter

  • Sign in

    If you are an existing user, please sign in. New users may register.

Cookies help us deliver our services. By using our services, you agree to our use of cookies. Got it