DOI: https://doi.org/10.5513/JCEA01/22.4.3267
Original scientific paper
Changes in soil physical properties under the influence of haypasture-colonizing successional grasses
2021, 22 (4) p. 848-859
Antun Jelinčić, Dora Sertić, Karla Željković, Ivan Magdić, Mario Sraka
Abstract
This study investigated the changes in soil physical properties after the abandonment of haypastures dominated by Helictotrichon pubescens and subsequent colonization by successional grasses Brachypodium pinnatum and Calamagrostis epigejos. We also investigated if there are linear relationships among the soil physical properties in the studied soils, and the results of the soil chemical property analysis were used as an aid in the interpretation of these relationships. The studied soil was calcocambisol on limestone. Soil samples were collected in disturbed and undisturbed state, and the differences among them were analysed by Mann-Whitney U test, whereas the relationships between soil properties were analysed with simple linear regression models. Soil solid particle density was higher in the B horizons of successional grasslands (median=2.61 g/cm3) than in those of haypastures (median=2.54 g/cm3). The A horizons of haypastures were barely 2–3 cm deep, whereas under successional grasses their depth reached as much as 25 cm. At the same soil depth (10–12 cm), the soil colonized by successional grasses had higher total porosity (median=53.3%) and lower bulk density (median=1.18 g/cm3) than those of haypasture soil (medians of 45.1% and 1.41 g/cm3, respectively). Soil total porosity and water holding capacity were positively linearly associated (r2= 0.71, P<0.0001), but they were both negatively associated with bulk density (r2=0.98 and r2=0.67, respectively, P<0.0001), which was due to strong control of humus over the soil physical properties. We showed that the prevailing grassland type should not be ignored when studying physical properties of a specific soil type.
Keywords
vegetation succession, soil-vegetation relationships, calcocambisol, rotational grazing, land-use change
Download Find similar articles